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Introduction Parameters Evaluation 

Method Description 

Parameters Evaluation on the FERET face dataset.  

The classification rates of RSR that uses the Stein kernel [Harandi et al. ECCV 12] are shown as baseline (red dash-dotted line). 

Sparse Representation 

Dictionary Learning 

Texture Classification on the Brodatz dataset 

Num. of atoms 32 64 128 

Random dictionary  44.80±0.90 57.64±0.59 62.25±0.65 

LogE K-means 67.69±0.56 76.25±0.48 78.80±0.53 

Dictionary 

learning  

75.84±0.64 79.27±0.65 80.92±0.44 

Scene Classification on the Scene15 dataset 

 
Average rates on all 

nine mosaics are 

0.66, 0.81, 0.87, 

and 0.92 for LogE-

SR, TSC, RSR, and 

Log-E Kernel, 

respectively 

SRC 

[PAMI 

09] 

GSRC 

[ECCV 

10] 

LogE-SR 

[ACCV 

09] 

TSC 

[ECCV 

10] 

RSR 

[ECCV 

12] 

Log-E Kernel 

Kpn Ken 

 

Kg 

bg 26.0 79.0 46.5 44.5 86.0 92.0 91.5 94.5 

bf 61.0 97.0 91.0 73.5 97.5 100 99.5 100 

be 55.5 93.5 81.0 73.0 96.5 99.0 99.0 99.0 

bd 27.5 77.0 34.5 36.0 79.5 88.5 88.0 91.5 

ave. 42.5 86.6 63.3 56.8 89.9 94.9 94.5 96.3 

Comparison with state-of-the-arts on the FERET database 

Training 

samples 
Test 

 samples 

Recently there are growing interests in studying sparse 

representation (SR) and dictionary learning (DL) of 

symmetric positive definite (SPD) matrices. 

Method Representation given atoms Riemannian Metric? Riemannian atom update? Mercer’s condition? 

TSC [ECCV10,ICCV11] Linear in Euclidean space No-LogDet divergence No-Euclidean N/A 

GDL [ECML12] Linear in Euclidean space No-Frobenius norm No-Euclidean N/A 

LogE-SR [ACCV 10] Linear in Log-domain Yes No-Euclidean N/A 

RSR [ECCV 12] Linear in RKHS Approximation-Stein divergence No-Euclidean Satisfy-conditionally 

Proposed method Linear in RKHS Yes Yes-Riemannian Satisfy 

Background 

The space of n-by-n SPD matrices 

 is not a linear space but a Lie group 

that forms a Riemannian manifold. 
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Comparison of State-of-the-arts on SR and DL in 

1. Previous work fails to exploit the geometry of      ,  using the Euclidean norm or Bregman divergence to evaluate the reconstruction error.  

2. The  dictionary atoms are updated without taking account of the geometric structure of       . 

3. Linear decomposition makes sense in high- or infinite-dimensional RKHS In [Harandi et al. ECCV 12];  however, the Stein divergence is 

only an approximation of Riemannian metric and satisfy Mercer’s condition  under some restricted conditions. 
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Main Contributions 

Classifiers 
(1) In the Log-Euclidean framework, we disclosed     is a complete 

inner product space, and developed a broad family of p.d. kernels. 

 Characterize the geodesic distance between SPD matrices. 

 Satisfy the Mercer’s condition in general conditions.  

(2) Dictionary atoms are updated in Riemannian space. 

(3) Experiments have shown the superiority of our method to   state-

of-the-arts. 
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Log-E poly. kernel  

Log-E exp. kernel  

Log-E Gaussian  

kernel 

(1) The residual error approach for classification: 
 

 

 

 

(2) We learn  the sparse codes obtained from the predefined atom matrices are used for 

classification with the nearest neighbor classifier or support machine vector (SVM). 
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Classification rates on nine mosaics from the Brodatz dataset.  

Key Idea 

Our work is inspired by 

[Harandi et al. ECCV 12] 

and is also kernel-based.  

We develop a family of 

kernel functions based 

on the Log-Euclidean 

framework . 

The main differences:  

 Characterizing the 

geodesic distance 

and so accurately 

measuring the 

reconstruction error;  

 Satisfying Mercer’s 

condition under 

broad conditions; 

 DL that consider 

geometric structure 

of        . 
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V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector space structure on 

symmetric positive-definite matrices. SIAM J. on  Matrix Analysis and Applications, 2006. 

Sn
+  is a complete inner product space 

Corollary    With two operations     and      , the function from the product 

space of        to the space  R of real number 

 

 

 

is an inner product. 

           satisfies the properties of symmetry,   linearity, & non-negativity. 

The induced norm                               can be used to define the distance 

    that equals to the geodesic distance. 

          is  complete. 

                                                                    is an inner product as well, 

    where A is a SPD matrix. 
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Let pn be a polynomial of degree 

n≥1 with positive coefficients, we 

have p.d. kernels 
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 M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell. Sparse coding and dictionary 

learning for symmetric positive definite matrices: a kernel approach. In ECCV(2), 2012. 
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